Mark schemes

Q1.
$\tan x=\frac{3}{7}$ or $\tan ^{-1} \frac{3}{7}$
or $\sin x=\frac{3(\sin 90)}{\sqrt{3^{2}+7^{2}}}$
or $\sin x=\frac{3(\sin 90)}{\sqrt{58}}$
or $\cos x=\frac{7}{\sqrt{3^{2}+7^{2}}}$
or $\cos x=\frac{7}{\sqrt{58}}$
or $90-\tan ^{-1} \frac{7}{3}$
or $90-[66.7,66.81]$
or 90-67
oe

$$
e g \cos x=\frac{7^{2}+\left(\sqrt{7^{2}+3^{2}}\right)^{2}-3^{2}}{2 \times \sqrt{3^{2}+7^{2}} \times 7}
$$

Any letter
[23, 23.3]

Additional Guidance

$\tan =\frac{3}{7}$ or $\tan \frac{3}{7}$ or $\tan ^{-1}=\frac{3}{7} \quad$ (unless recovered)

Answer [23, 23.3] (possibly coming from scale drawing)

If using sine rule must rearrange to $\sin x=$ for M1
If using cosine rule must rearrange to $\cos x=$ for M1
Allow $[0.42,0.43]$ for $\frac{3}{7}$
Allow 2.33... for $\frac{7}{3}$
Allow [7.6, 7.62] for $\sqrt{3^{2}+7^{2}}$

Q2.
$\sin 72=\frac{x}{8}$
or $8 \times \sin 72$
or $\cos (90-72)=\frac{x}{8}$
or $8 \times \cos (90-72)$
or $\frac{x}{\sin 72}=\frac{8}{\sin 90}$
or $\frac{\sin 72}{x}=\frac{\sin 90}{8}$
oe
eg $8 \cos 72$ or $2.47 \ldots$ or 2.5 and $\sqrt{8^{2}-(8 \cos 72)^{2}}$
[7.6, 7.61]

Additional Guidance

If trigonometry and Pythagoras are used it must be a fully correct method that would lead to the correct value of x

Accept $\sin 72 \times 8$

Accept opp or o for x eg $\sin 72=\frac{\text { opp }}{8}$
$\sin =\frac{x}{8}$ or $\sin \theta=\frac{x}{8}$ (unless recovered)

Answer coming from scale drawing

Answer in range seen followed by 7 or 8

Q3.
(a) $\quad \cos x=\frac{8}{11}$

$$
\begin{aligned}
& \text { or } \sin x=\frac{\frac{\sqrt{11^{2}-8^{2}}}{11}}{\text { or } \tan x=\frac{\sqrt{11^{2}-8^{2}}}{8}} \begin{array}{l}
\text { oe }
\end{array} \\
& \text { or }
\end{aligned}
$$

43(.3...)
(b) $\tan 40=\frac{y}{37}$ or $\tan 50=\frac{37}{y}$
oe
$x=48.3 \ldots$ and $37^{2}+y^{2}=48.3^{2}$
$48.3 \cos 50$ or $48.3 \sin 40$
31. (...)

Q4.
Identification of cosine

$$
\frac{\sin P}{12}=\frac{\sin 90}{15} \quad \sin Q=\frac{9}{15}
$$

$$
\begin{array}{lll}
\cos P=\frac{9}{15} & \\
& \begin{array}{ll}
\sin P=\frac{12}{15}(\sin 90) & 90-\sin ^{-1}\left(\frac{9}{15}\right) \\
\text { oe } & \text { oe }
\end{array}
\end{array}
$$

53(.1...)

Q5.
$\sin 30=\frac{6}{l}$

$$
\frac{6}{\sin 30} \text { or } 12
$$

$\cos x=\frac{8}{\text { their } 12}$ or $0.66 \ldots$ or 0.67
or $\cos x=\frac{8 \times \sin 30}{6}$

$$
\cos ^{-1} \frac{2}{3}
$$

oe
48.(...)

Q6.
(a) $\pm 73^{2} \pm 48^{2}$
(5329 $\pm 2304)(7633$ or 3025) $x^{2}+48^{2}=73^{2}$
$73^{2}-48^{2}$ or $5329-2304$
or $x^{2}+48^{2}=73^{2}$
or $x^{2}+2304=5329$
and $\sqrt{ } 3025$
or $55 \times 55=3025$
or $55^{2}=3025$
Strand (ii). Must show subtraction and square root

55
55 with no working is M1, Q0, A1
(b) Sight of cos with 32 and 42 used together (equation or expression can be nonsense)
$\cos x=32 \div 42$ or $\cos ^{-1}(32 \div 42)$
or $\cos x=0.76$.. or $\cos ^{-1}(0.76 \ldots)$
or $\cos ^{-1}=32 \div 42$
oe
[40.3, 40.4]
40 with working
Correct answer is 3 marks no matter what they do before.
Ms are for partial working if answer incorrect

Q7.
(a) $25^{2}+43^{2}$
$43^{2}-25^{2}$
$49.7 \ldots$
Accept 50 with working
Ignore incorrect working after correct answer seen

Alternative

Either angle correctly calculated to 30 or 60 or better and used with an appropriate trig ratio and side

Angles are 30.17... and 59.826
eg $43 \div \cos 30$
or $43 \div \sin 60$
or $25 \div \cos 60$
or $25 \div \sin 30$
NB if cosine rule used then
$25^{2}+43^{2}-2 \times 25 \times 43 \times \cos 90$ must lead to $\sqrt{ } 2474$ for $M 2$ otherwise it is M0
[49.69, 49.75]
A0 if outside range due to premature rounding.
(b) Sight of tan
$\tan x=15 \div 33$
oe
24.4..

Accept 24 with working

Ignore incorrect rounding after correct answer seen

Alternative

Hypotenuse correctly calculated as [36,36.3] and then either side used with the hypotenuse and an appropriate trig ratio or cosine rule

$$
\begin{aligned}
& \text { eg } \cos ^{-1}(33 \div 36) \\
& \sin ^{-1}(15 \div 36) \\
& \text { or } \\
& \cos y=\left(33^{2}+36^{2}-15^{2}\right) \div(2 \times 33 \times 36)
\end{aligned}
$$

[24.35, 24.45]
A0 if outside range due to premature rounding.

Q8.
(a) $\frac{3}{4}$
oe
(b) Alternative method 1

or
$4 \div 3$ or ${ }^{\frac{4}{3}}$ or $3 \div 4$ or $\frac{3}{4}$
oe
4.5

Alternative method 2

$$
\begin{array}{r}
\frac{y}{6}=\text { their } \frac{3}{4} \\
\text { oe }
\end{array}
$$

4.5
ft their tan x from (a)

Alternative method 3

$$
\begin{aligned}
\tan ^{-1} \text { (their } & \frac{3}{4} \\
& \text { This or could be on the diagram or seen in part (a) }
\end{aligned}
$$

4.5

ft their $\tan x$ from (a)

Additional Guidance

For M1, accept ${ }^{\frac{2}{3}}$ or ${ }^{\frac{4}{3}}$ given as a decimal truncated or rounded to $2 d$ dp or better
Award both marks for an answer of 8 in part (b) unless an incorrect statement is made; eg
in (a), $\tan x=\frac{\frac{4}{3}}{3}$, in (b), ${ }^{\frac{3}{4}}=\frac{\frac{y}{6}}{}$, answer 4.5

$$
\text { in (a), } \tan x=\frac{\frac{4}{3}}{3}, \text { in (b), } \tan x=\frac{\frac{6}{y}}{\text { (incorrect), }}, \frac{\frac{4}{3}}{}=\frac{6}{y} \text {, answer } 4.5
$$

M0A0
in $(\mathrm{a}), \tan x=\frac{4}{3}$, in (b), $\tan x=\frac{\frac{y}{6}}{6}, \frac{4}{3}=\frac{y}{6}$, answer 8
M1A1ft
If the answer line is blank, but 4.5 is seen correctly embedded or as the correct length on the diagram, award only the method mark

In alt 2 and alt 3 their $\tan x$ must be a value for $\tan x$ and not a value for x

Q9.
$\sin 28$ chosen

$$
\text { cos } 62 \text { chosen }
$$

$\frac{7}{\sin 28}$

$$
\frac{7}{\cos 62}
$$

Q10.
(horizontal =) $8 \cos 42(=[5.9,6])$ or
(horizontal =) $8 \sin 48(=[5.9,6])$
$M 1 \cos 42=\frac{x}{8}$ or $\sin 48=\frac{x}{8}$
(x is the horizontal)

$$
\begin{aligned}
& (\text { vertical }=) 8 \sin 42(=[5.35,5.4]) \text { or } \\
& (\text { vertical }=) 8 \cos 48(=[5.35,5.4]) \text { or } \\
& (\text { vertical }=) \sqrt{8^{2}-\text { their }[5.9,6]^{2}}(=[5.35,5.4]) \\
& \qquad M 1 \sin 42=\frac{y}{8} \text { or } \cos 48=\frac{y}{8} \\
& (y \text { is the vertical }) \\
& \text { or } \\
& 8_{2}-\text { their }[5.9,6] 2
\end{aligned}
$$

Alternative method

(vertical =) $8 \sin 42(=[5.35,5.4])$
(vertical =) $8 \cos 48(=[5.35,5.4])$

$$
\begin{aligned}
& M 1 \sin 42=\frac{y}{8} \quad \text { or } \quad \cos 48=\frac{y}{8} \\
& (y \text { is the vertical })
\end{aligned}
$$

(horizontal =) $8 \cos 42(=[5.9,6])$ or
(horizontal $=$) $8 \sin 48(=[5.9,6])$ or
$($ horizontal $=) \sqrt{8^{2}-\text { their }[5.35,5.4]^{2}} \quad(=[5.9,6])$
$M 1 \cos 42=\frac{x}{8}$ or $\sin 48=\frac{y}{8}$
(x is the horizontal)
or
8^{2} - their [5.35, 5.4] ${ }^{2}$
[35.4, 35.5]
SC2 [31.8, 31.9]

Q11.

(a) $\frac{3}{5}$ or 0.6
(b) 35 or 35.0 or $34.99(\ldots)$

Do not accept 34.9

Q12.
$\sin 20=\frac{x}{12}$ or $12 \sin 20$
oe
4.1...

Accept 4 with working shown

